Use Computed Columns

On this page Carat arrow pointing down
Warning:
CockroachDB v20.2 is no longer supported as of May 10, 2022. For more details, refer to the Release Support Policy.

A computed column stores data generated from other columns by a scalar expression included in the column definition.

Why use computed columns?

Computed columns are especially useful when used with partitioning, JSONB columns, or secondary indexes.

  • Partitioning requires that partitions are defined using columns that are a prefix of the primary key. In the case of geo-partitioning, some applications will want to collapse the number of possible values in this column, to make certain classes of queries more performant. For example, if a users table has a country and state column, then you can make a stored computed column locality with a reduced domain for use in partitioning. For more information, see the partitioning example below.

  • JSONB columns are used for storing semi-structured JSONB data. When the table's primary information is stored in JSONB, it's useful to index a particular field of the JSONB document. In particular, computed columns allow for the following use case: a two-column table with a PRIMARY KEY column and a payload column, whose primary key is computed as some field from the payload column. This alleviates the need to manually separate your primary keys from your JSON blobs. For more information, see the JSONB example below.

  • Secondary indexes can be created on computed columns, which is especially useful when a table is frequently sorted. See the secondary indexes example below.

Considerations

Computed columns:

  • Cannot be used to generate other computed columns.
  • Cannot be a foreign key reference.
  • Behave like any other column, with the exception that they cannot be written to directly.
  • Are mutually exclusive with DEFAULT.

Once a computed column is created, you cannot directly alter the formula. To make modifications to a computed column's formula, see the example below.

Creation

To define a computed column, use the following syntax:

column_name <type> AS (<expr>) STORED
Parameter Description
column_name The name/identifier of the computed column.
<type> The data type of the computed column.
<expr> The pure scalar expression used to compute column values. Any functions marked as impure, such as now() or nextval() cannot be used.
STORED (Required) The computed column is stored alongside other columns.

New in v20.2: For compatibility with PostgresSQL, CockroachDB also supports creating computed columns with the syntax column_name <type> GENERATED ALWAYS AS (<expr>) STORED.

Examples

Create a table with a computed column

In this example, let's create a simple table with a computed column:

icon/buttons/copy
> CREATE TABLE users (
        id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
        city STRING,
        first_name STRING,
        last_name STRING,
        full_name STRING AS (CONCAT(first_name, ' ', last_name)) STORED,
        address STRING,
        credit_card STRING,
        dl STRING UNIQUE CHECK (LENGTH(dl) < 8)
);

Then, insert a few rows of data:

icon/buttons/copy
> INSERT INTO users (first_name, last_name) VALUES
    ('Lola', 'McDog'),
    ('Carl', 'Kimball'),
    ('Ernie', 'Narayan');
icon/buttons/copy
> SELECT * FROM users;
                   id                  | city | first_name | last_name |   full_name   | address | credit_card |  dl
+--------------------------------------+------+------------+-----------+---------------+---------+-------------+------+
  5740da29-cc0c-47af-921c-b275d21d4c76 | NULL | Ernie      | Narayan   | Ernie Narayan | NULL    | NULL        | NULL
  e7e0b748-9194-4d71-9343-cd65218848f0 | NULL | Lola       | McDog     | Lola McDog    | NULL    | NULL        | NULL
  f00e4715-8ca7-4d5a-8de5-ef1d5d8092f3 | NULL | Carl       | Kimball   | Carl Kimball  | NULL    | NULL        | NULL
(3 rows)

The full_name column is computed from the first_name and last_name columns without the need to define a view.

Create a table with geo-partitions and a computed column

Note:
Partioning is an enterprise feature. To request and enable a trial or full enterprise license, see Enterprise Licensing.

In this example, create a table with geo-partitioning and a computed column:

icon/buttons/copy
> CREATE TABLE user_locations (
    locality STRING AS (CASE
      WHEN country IN ('ca', 'mx', 'us') THEN 'north_america'
      WHEN country IN ('au', 'nz') THEN 'australia'
    END) STORED,
    id SERIAL,
    name STRING,
    country STRING,
    PRIMARY KEY (locality, id))
    PARTITION BY LIST (locality)
    (PARTITION north_america VALUES IN ('north_america'),
    PARTITION australia VALUES IN ('australia'));

Then, insert a few rows of data:

icon/buttons/copy
> INSERT INTO user_locations (name, country) VALUES
    ('Leonard McCoy', 'us'),
    ('Uhura', 'nz'),
    ('Spock', 'ca'),
    ('James Kirk', 'us'),
    ('Scotty', 'mx'),
    ('Hikaru Sulu', 'us'),
    ('Pavel Chekov', 'au');
icon/buttons/copy
> SELECT * FROM user_locations;
+---------------+--------------------+---------------+---------+
|   locality    |         id         |     name      | country |
+---------------+--------------------+---------------+---------+
| australia     | 333153890100609025 | Uhura         | nz      |
| australia     | 333153890100772865 | Pavel Chekov  | au      |
| north_america | 333153890100576257 | Leonard McCoy | us      |
| north_america | 333153890100641793 | Spock         | ca      |
| north_america | 333153890100674561 | James Kirk    | us      |
| north_america | 333153890100707329 | Scotty        | mx      |
| north_america | 333153890100740097 | Hikaru Sulu   | us      |
+---------------+--------------------+---------------+---------+

The locality column is computed from the country column. The locality values can then be used for geo-partitioning.

Create a table with a JSONB column and a computed column

In this example, create a table with a JSONB column and a computed column:

icon/buttons/copy
> CREATE TABLE student_profiles (
    id STRING PRIMARY KEY AS (profile->>'id') STORED,
    profile JSONB
);

Then, insert a few rows of data:

icon/buttons/copy
> INSERT INTO student_profiles (profile) VALUES
    ('{"id": "d78236", "name": "Arthur Read", "age": "16", "school": "PVPHS", "credits": 120, "sports": "none"}'),
    ('{"name": "Buster Bunny", "age": "15", "id": "f98112", "school": "THS", "credits": 67, "clubs": "MUN"}'),
    ('{"name": "Ernie Narayan", "school" : "Brooklyn Tech", "id": "t63512", "sports": "Track and Field", "clubs": "Chess"}');
icon/buttons/copy
> SELECT * FROM student_profiles;
+--------+---------------------------------------------------------------------------------------------------------------------+
|   id   |                                                       profile                                                       |
+--------+---------------------------------------------------------------------------------------------------------------------+
| d78236 | {"age": "16", "credits": 120, "id": "d78236", "name": "Arthur Read", "school": "PVPHS", "sports": "none"}           |
| f98112 | {"age": "15", "clubs": "MUN", "credits": 67, "id": "f98112", "name": "Buster Bunny", "school": "THS"}               |
| t63512 | {"clubs": "Chess", "id": "t63512", "name": "Ernie Narayan", "school": "Brooklyn Tech", "sports": "Track and Field"} |
+--------+---------------------------------------------------------------------------------------------------------------------+

The primary key id is computed as a field from the profile column.

Create a table with a secondary index on a computed column

In this example, create a table with a computed columns and an index on that column:

icon/buttons/copy
> CREATE TABLE gymnastics (
    id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
    athlete STRING,
    vault DECIMAL,
    bars DECIMAL,
    beam DECIMAL,
    floor DECIMAL,
    combined_score DECIMAL AS (vault + bars + beam + floor) STORED,
    INDEX total (combined_score DESC)
  );

Then, insert a few rows a data:

icon/buttons/copy
> INSERT INTO gymnastics (athlete, vault, bars, beam, floor) VALUES
    ('Simone Biles', 15.933, 14.800, 15.300, 15.800),
    ('Gabby Douglas', 0, 15.766, 0, 0),
    ('Laurie Hernandez', 15.100, 0, 15.233, 14.833),
    ('Madison Kocian', 0, 15.933, 0, 0),
    ('Aly Raisman', 15.833, 0, 15.000, 15.366);
icon/buttons/copy
> SELECT * FROM gymnastics;
+--------------------------------------+------------------+--------+--------+--------+--------+----------------+
|                  id                  |     athlete      | vault  |  bars  |  beam  | floor  | combined_score |
+--------------------------------------+------------------+--------+--------+--------+--------+----------------+
| 3fe11371-6a6a-49de-bbef-a8dd16560fac | Aly Raisman      | 15.833 |      0 | 15.000 | 15.366 |         46.199 |
| 56055a70-b4c7-4522-909b-8f3674b705e5 | Madison Kocian   |      0 | 15.933 |      0 |      0 |         15.933 |
| 69f73fd1-da34-48bf-aff8-71296ce4c2c7 | Gabby Douglas    |      0 | 15.766 |      0 |      0 |         15.766 |
| 8a7b730b-668d-4845-8d25-48bda25114d6 | Laurie Hernandez | 15.100 |      0 | 15.233 | 14.833 |         45.166 |
| b2c5ca80-21c2-4853-9178-b96ce220ea4d | Simone Biles     | 15.933 | 14.800 | 15.300 | 15.800 |         61.833 |
+--------------------------------------+------------------+--------+--------+--------+--------+----------------+

Now, run a query using the secondary index:

icon/buttons/copy
> SELECT athlete, combined_score FROM gymnastics ORDER BY combined_score DESC;
+------------------+----------------+
|     athlete      | combined_score |
+------------------+----------------+
| Simone Biles     |         61.833 |
| Aly Raisman      |         46.199 |
| Laurie Hernandez |         45.166 |
| Madison Kocian   |         15.933 |
| Gabby Douglas    |         15.766 |
+------------------+----------------+

The athlete with the highest combined score of 61.833 is Simone Biles.

Add a computed column to an existing table

In this example, create a table:

icon/buttons/copy
> CREATE TABLE x (
    a INT NULL,
    b INT NULL AS (a * 2) STORED,
    c INT NULL AS (a + 4) STORED,
    FAMILY "primary" (a, b, rowid, c)
  );

Then, insert a row of data:

icon/buttons/copy
> INSERT INTO x VALUES (6);
icon/buttons/copy
> SELECT * FROM x;
+---+----+----+
| a | b  | c  |
+---+----+----+
| 6 | 12 | 10 |
+---+----+----+
(1 row)

Now add another computed column to the table:

icon/buttons/copy
> ALTER TABLE x ADD COLUMN d INT AS (a // 2) STORED;

The d column is added to the table and computed from the a column divided by 2.

icon/buttons/copy
> SELECT * FROM x;
+---+----+----+---+
| a | b  | c  | d |
+---+----+----+---+
| 6 | 12 | 10 | 3 |
+---+----+----+---+
(1 row)

For more information, see ADD COLUMN.

Convert a computed column into a regular column

You can convert a stored, computed column into a regular column by using ALTER TABLE.

In this example, create a simple table with a computed column:

icon/buttons/copy
> CREATE TABLE office_dogs (
    id INT PRIMARY KEY,
    first_name STRING,
    last_name STRING,
    full_name STRING AS (CONCAT(first_name, ' ', last_name)) STORED
  );

Then, insert a few rows of data:

icon/buttons/copy
> INSERT INTO office_dogs (id, first_name, last_name) VALUES
    (1, 'Petee', 'Hirata'),
    (2, 'Carl', 'Kimball'),
    (3, 'Ernie', 'Narayan');
icon/buttons/copy
> SELECT * FROM office_dogs;
+----+------------+-----------+---------------+
| id | first_name | last_name |   full_name   |
+----+------------+-----------+---------------+
|  1 | Petee      | Hirata    | Petee Hirata  |
|  2 | Carl       | Kimball   | Carl Kimball  |
|  3 | Ernie      | Narayan   | Ernie Narayan |
+----+------------+-----------+---------------+
(3 rows)

The full_name column is computed from the first_name and last_name columns without the need to define a view. You can view the column details with the SHOW COLUMNS statement:

icon/buttons/copy
> SHOW COLUMNS FROM office_dogs;
+-------------+-----------+-------------+----------------+------------------------------------+-------------+
| column_name | data_type | is_nullable | column_default |       generation_expression        |   indices   |
+-------------+-----------+-------------+----------------+------------------------------------+-------------+
| id          | INT       |    false    | NULL           |                                    | {"primary"} |
| first_name  | STRING    |    true     | NULL           |                                    | {}          |
| last_name   | STRING    |    true     | NULL           |                                    | {}          |
| full_name   | STRING    |    true     | NULL           | concat(first_name, ' ', last_name) | {}          |
+-------------+-----------+-------------+----------------+------------------------------------+-------------+
(4 rows)

Now, convert the computed column (full_name) to a regular column:

icon/buttons/copy
> ALTER TABLE office_dogs ALTER COLUMN full_name DROP STORED;

Check that the computed column was converted:

icon/buttons/copy
> SHOW COLUMNS FROM office_dogs;
+-------------+-----------+-------------+----------------+-----------------------+-------------+
| column_name | data_type | is_nullable | column_default | generation_expression |   indices   |
+-------------+-----------+-------------+----------------+-----------------------+-------------+
| id          | INT       |    false    | NULL           |                       | {"primary"} |
| first_name  | STRING    |    true     | NULL           |                       | {}          |
| last_name   | STRING    |    true     | NULL           |                       | {}          |
| full_name   | STRING    |    true     | NULL           |                       | {}          |
+-------------+-----------+-------------+----------------+-----------------------+-------------+
(4 rows)

The computed column is now a regular column and can be updated as such:

icon/buttons/copy
> INSERT INTO office_dogs (id, first_name, last_name, full_name) VALUES (4, 'Lola', 'McDog', 'This is not computed');
icon/buttons/copy
> SELECT * FROM office_dogs;
+----+------------+-----------+----------------------+
| id | first_name | last_name |      full_name       |
+----+------------+-----------+----------------------+
|  1 | Petee      | Hirata    | Petee Hirata         |
|  2 | Carl       | Kimball   | Carl Kimball         |
|  3 | Ernie      | Narayan   | Ernie Narayan        |
|  4 | Lola       | McDog     | This is not computed |
+----+------------+-----------+----------------------+
(4 rows)

Alter the formula for a computed column

To alter the formula for a computed column, you must DROP and ADD the column back with the new definition. Take the following table for instance:

icon/buttons/copy
> CREATE TABLE x (
a INT NULL,
b INT NULL AS (a * 2) STORED,
c INT NULL AS (a + 4) STORED,
FAMILY "primary" (a, b, rowid, c)
);
CREATE TABLE


Time: 4ms total (execution 4ms / network 0ms)

Add a computed column d:

icon/buttons/copy
> ALTER TABLE x ADD COLUMN d INT AS (a // 2) STORED;
ALTER TABLE


Time: 199ms total (execution 199ms / network 0ms)

If you try to alter it, you'll get an error:

icon/buttons/copy
> ALTER TABLE x ALTER COLUMN d INT AS (a // 3) STORED;
invalid syntax: statement ignored: at or near "int": syntax error
SQLSTATE: 42601
DETAIL: source SQL:
ALTER TABLE x ALTER COLUMN d INT AS (a // 3) STORED
                             ^
HINT: try \h ALTER TABLE

However, you can drop it and then add it with the new definition:

icon/buttons/copy
> SET sql_safe_updates = false;
> ALTER TABLE x DROP COLUMN d;
> ALTER TABLE x ADD COLUMN d INT AS (a // 3) STORED;
> SET sql_safe_updates = true;
SET


Time: 1ms total (execution 0ms / network 0ms)

ALTER TABLE


Time: 195ms total (execution 195ms / network 0ms)

ALTER TABLE


Time: 186ms total (execution 185ms / network 0ms)

SET


Time: 0ms total (execution 0ms / network 0ms)

See also


Yes No
On this page

Yes No